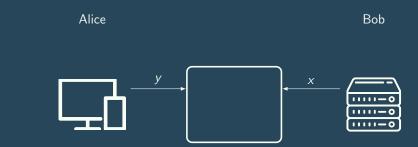
How to Obfuscate MPC Inputs

Theory of Cryptography Conference 2022 School of Electrical Engineering and Computer Science Oregon State University

Ian McQuoid Mike Rosulek Jiayu Xu

Introduction

Bob wants to provide a service to Alice using his input x.



Introduction

- Bob wants to provide a service to Alice using his input x.
- But both Alice's and Bob's inputs contain private data.

Introduction

Alice

- Bob wants to provide a service to Alice using his input x.
- But both Alice's and Bob's inputs contain private data.
- lacktriangle Bob is worried about compromise of his service leaking x.

f(x,y) f

Bob

io2PC- Point Functions

• Evaluating $x \stackrel{?}{=} y$ online is oblivious and interactive.

Alice Bob

io2PC- Point Functions

- Evaluating $x \stackrel{?}{=} y$ online is oblivious and interactive.
- On compromise, we only leak an equality oracle $y \mapsto x \stackrel{?}{=} y$.

Alice Bob

io2PC- Point Functions

Alice

- Evaluating $x \stackrel{?}{=} y$ online is oblivious and interactive.
- On compromise, we only leak an equality oracle $y \mapsto x \stackrel{?}{=} y$.
- Offline evaluation of $x \stackrel{?}{=} y$ must be done *post-compromise*.

Bob

io2PC- General Case

- Evaluating f(x, y) online is oblivious and interactive.
- Only an oracle $f(x, \cdot)$ is leaked on Bob's compromise.
- Offline evaluation of f(x, y) must be done post-compromise.

Alice Bob $\frac{y}{f(x,y)} = \frac{\sigma(x)}{\cos 2PC}$

io2PC

Theorem

There exists an UC-secure io2PC protocol for a function f, if the related class of functions $\mathcal{C}_f = \{f(x,\cdot) \mid x \in \{0,1\}^n\}$ has a VBB obfuscation in either the random oracle or generic group models.

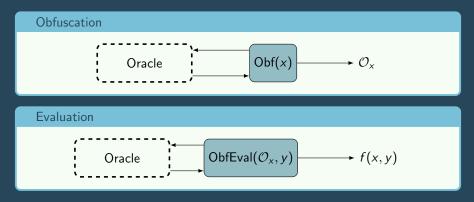
io2PC

Theorem

There exists an UC-secure io2PC protocol for a function f, if the related class of functions $C_f = \{f(x,\cdot) \mid x \in \{0,1\}^n\}$ has a VBB obfuscation in either the random oracle or generic group models.

 We achieve this by replacing the corresponding non-interactive oracle queries with interactive protocols.

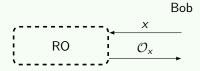
Virtual Black-Box Obfuscation



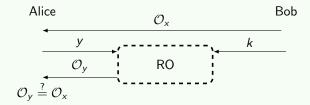
A VBB obfuscation \mathcal{O}_x can be *simulated* with only oracle access to $f(x,\cdot)$.

Virtual Black-Box Obfuscation - Point Function

Obfuscation

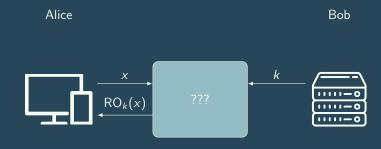


Evaluation



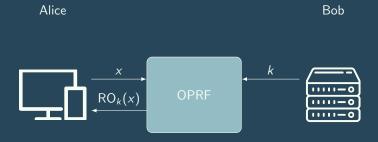
Interactive Random Oracles

What does an "interactive random oracle" look like?



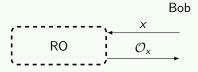
Oblivious Psuedorandom Functions

What does an "interactive random oracle" look like?

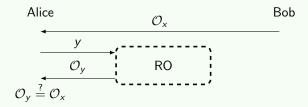


 JKKX16 provides an oblivious psuedorandom function (OPRF) achieving this property!

Obfuscation

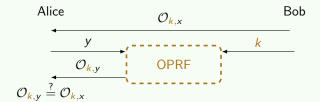


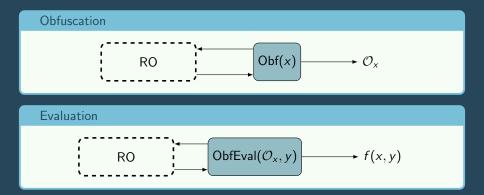
Evaluation

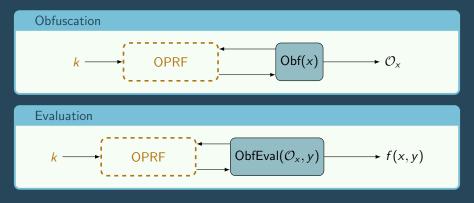


Obfuscation

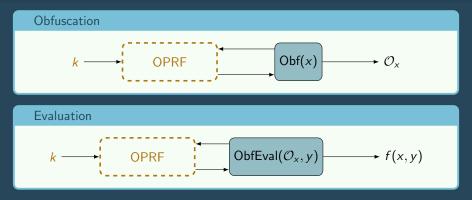
Evaluation







Why is this not trivial in 2pc? — The idealized primitives are exponential in size!



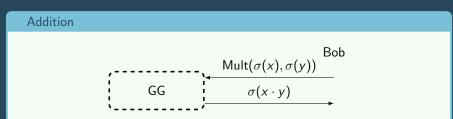
Why is this not trivial in 2pc? — The idealized primitives are exponential in size!

Can we construct interactive versions of other idealized primitives?

What about generic groups?

Generic Groups

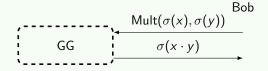
For a uniform encoding $\sigma: \mathbb{Z}_p o \{0,1\}^*$



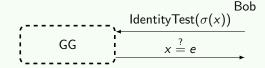
Generic Groups

For a uniform encoding $\sigma: \mathbb{Z}_p \to \{0,1\}^*$

Multiplication



Identity Test



- lacktriangle Given a publicly accessible GG $\mathcal{G}:=(g,\cdot)$ and a "key" $(k\leftarrow\mathcal{K},\hat{g}\leftarrow\mathcal{G})$.
- We construct an iGG where operations are interactive, oblivious, and require the key.
- Elements take the form $(F_k(m), \hat{g}^x \cdot g^m)$.

- lacktriangle Given a publicly accessible GG $\mathcal{G}:=(g,\cdot)$ and a "key" $(k\leftarrow\mathcal{K},\hat{g}\leftarrow\mathcal{G})$.
- We construct a iGG where operations are interactive, oblivious, and require the key.
- Elements take the form $(F_k(m), \hat{g}^{\times} \cdot g^m)$.

Multiplication

$$(F_k(m_1), g_1) \cdot_k (F_k(m_2), g_2) := (F_k(m_3), \hat{g}^{x_1 + x_2} \cdot g^{m_3})$$

- lacktriangle Given a publicly accessible GG $\mathcal{G}:=(g,\cdot)$ and a "key" $(k\leftarrow\mathcal{K},\hat{g}\leftarrow\mathcal{G})$.
- We construct an iGG where operations are interactive, oblivious, and require the key.
- Elements take the form $(F_k(m), \hat{g}^x \cdot g^m)$.

Multiplication

$$(F_k(m_1), g_1) \cdot_k (F_k(m_2), g_2) := (F_k(m_3), \hat{g}^{x_1 + x_2} \cdot g^{m_3})$$

• $\hat{g}^{x_1+x_2} \cdot g^{m_3}$ can be computed using the public group.

- lacktriangle Given a publicly accessible GG $\mathcal{G}:=(g,\cdot)$ and a "key" $(k\leftarrow\mathcal{K},\hat{g}\leftarrow\mathcal{G})$.
- We construct an iGG where operations are interactive, oblivious, and require the key.
- Elements take the form $(F_k(m), \hat{g}^x \cdot g^m)$.

Addition

$$(F_k(m_1), g_1) \cdot_k (F_k(m_2), g_2) := (F_k(m_3), \hat{g}^{x_1 + x_2} \cdot g^{m_3})$$

- $\hat{g}^{x_1+x_2} \cdot g^{m_3}$ can be computed using the public group.
- $F_k(m_3)$ can be computed *interactively* in 2PC.

Personalized Generic Groups

- lacktriangle Given a publicly accessible GG $\mathcal{G}:=(g,\cdot)$ and a "key" $(k\leftarrow\mathcal{K},\hat{g}\leftarrow\mathcal{G})$.
- Elements take the form $(F_k(m), \hat{g}^x \cdot g^m)$.

Identity Test

IdentityTest
$$((F_k(m), g_1)) := g_1 \stackrel{?}{=} g^m$$

- lacktriangle Given a publicly accessible GG $\mathcal{G}:=(g,\cdot)$ and a "key" $(k\leftarrow\mathcal{K},\hat{g}\leftarrow\mathcal{G})$.
- Elements take the form $(F_k(m), \hat{g}^x \cdot g^m)$.

Identity Test

IdentityTest
$$((F_k(m), g_1)) := g_1 \stackrel{?}{=} g^m$$

• $g_1 \stackrel{?}{=} g^m$ can be calculated using the public group.

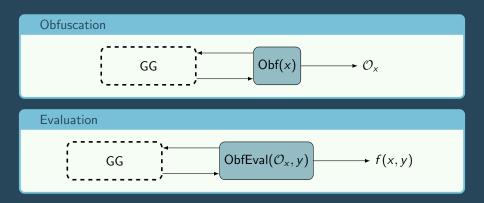
- lacktriangle Given a publicly accessible GG $\mathcal{G}:=(g,\cdot)$ and a "key" $(k\leftarrow\mathcal{K},\hat{g}\leftarrow\mathcal{G})$.
- Elements take the form $(F_k(m), \hat{g}^x \cdot g^m)$.

Identity Test

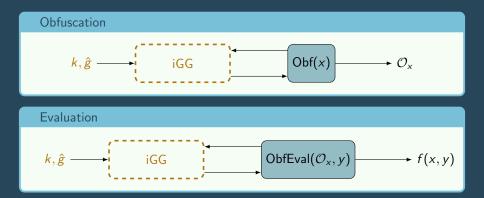
IdentityTest
$$((F_k(m), g_1)) := g_1 \stackrel{?}{=} g^m$$

- $g_1 \stackrel{?}{=} g^m$ can be calculated using the public group.
- Alice interactively learns blindings g_1^b and g^{bm} which she compares.

Input Obfuscation in the Generic Group Model



Input Obfuscation in the Generic Group Model



Conclusion

- We introduce the study of input obfuscation for secure two-party computation (io2PC).
- We provide a compiler from VBB in the GGM and ROM to io2PC.
- To construct the latter, we provide an oblivious, interactive GG analogous to an OPRF.
- We provide explicit io2PC protocols for point functions and hyperplane membership using our compiler.

Conclusion

- We introduce the study of input obfuscation for secure multi-party computation (io2PC).
- We provide a compiler from VBB in the GGM and ROM to UC-secure io2PC.
- To construct the latter, we provide an oblivious, interactive GG analogous to an OPRF.
- We prove that known VBB obfuscations of point functions and hyperplane membership are compatible.
- We conjecture that io 2PC is possible for generic graded encodings and therefore all \mathcal{P} .