Batching Base Oblivious Transfers

Ian McQuoid, Mike Rosulek, Lance Roy

Oregon State University
\{mcquoidi,rosulekm,royl\}@oregonstate.edu

December 5, 2021

Oblivious Transfer (OT)

Uniform Oblivious Transfer

Oblivious Transfer (OT)

Uniform Oblivious Transfer

$$
\begin{aligned}
& b \approx b^{\prime} \leftarrow \$\{0,1\} \\
& m_{0}, m_{1} \leftarrow \$
\end{aligned}
$$

No information
about m_{1-b}

OT Batching and Extension

Where is OT used?

1. Garbled Circuits [GoldreichMicaliWigderson87]
2. Private Set Intersection e.g. [PinkasSchneiderZohner14]

OT Batching and Extension

Where is OT used?

1. Garbled Circuits [GoldreichMicaliWigderson87]
2. Private Set Intersection e.g. [PinkasSchneiderZohner14]

Can require millions of OTs; necessarily requiring expensive assymetric operations!

Notation

Key Agreement (KA) notation:

- $A:=K A \cdot \operatorname{msg}_{1}(a)$
- $B:=K A \cdot \operatorname{msg}_{2}(A, b)$
- KA.key $(\{a, b\},\{A, B\})$

Elliptic Curve Diffie-Hellman KA:

- $A:=a \cdot g$
- $B:=b \cdot g$
- $a \cdot B, b \cdot A$

OT Batching and Extension

OT Extension [Beaver96]

OT Batching and Extension

OT Extension [Beaver96]

OT Batching and Extension

OT Extension [Beaver96]

- Transform a small number of base OTs into a large number of realized OTs.
- Optimize the base OTs.
- We can send all of them in a batch - This is the batch setting.
- The natural way to optimize batching lacked a principled treatment.

Results

- Provide a treatment of optimizing OTs in the batch setting.
- Expand the known OT constructions from [McQuoidRosulekRoy20].
- Optimize the resulting OT construction to the batch setting.

Roadmap

MRR20 Recap

1. The [MRR20] OT protocol
2. Programmable-Once Public Functions

The Problem with Batching

1. What's the issue?
2. What's the fix?

A Simple OT Protocol

As motivation [MRR20]:

A Simple OT Protocol

As motivation [MRR20]:

A Simple OT Protocol

As motivation [MRR20]:

Output
aIC.Dec $(0, \varphi)$
aIC. $\operatorname{Dec}(1, \varphi)$
Output
$b \cdot A=a \cdot \operatorname{IC} \cdot \operatorname{Dec}(c, \varphi)$

A Simple OT Protocol

What's going on?

- The Sender sends a KA message.

A Simple OT Protocol

What's going on?

- The Sender sends a KA message.
- The Receiver sends back a wrapped KA message dependent on their choice bit.

A Simple OT Protocol

[MRR20]

Output
a. $\operatorname{Eval}(\varphi, 0)$
a. $\operatorname{Eval}(\varphi, 1)$

Output
$b \cdot A=a \cdot \operatorname{Eval}(\varphi, c)$

Do we need the strong properties of an Ideal Cipher? Can we use something weaker?

A Simple OT Protocol

What Weak Cipher?

-
-

Our Ideal Cipher

- $\varphi:=\operatorname{IC.Enc}(c, b \cdot g)$
- Output: $a \cdot \operatorname{IC} \cdot \operatorname{Dec}(c, \varphi)$

A Simple Endemic OT Protocol

Our Ideal Cipher

- $\varphi:=\operatorname{IC} \cdot \operatorname{Enc}(c, b \cdot g)$
- Output: aIC.Dec (c, φ)

What Weak Cipher?

- $\varphi:=\operatorname{Program}(c, b \cdot g)$
-

A Simple Endemic OT Protocol

Our Ideal Cipher

- $\varphi:=\operatorname{IC} \cdot \operatorname{Enc}(c, b \cdot g)$
- Output: aIC.Dec (c, φ)

What Weak Cipher?

- $\varphi:=$ Program $(c, b \cdot g)$
- Output: $a \cdot \operatorname{Eval}(\varphi, 1)$

Programmable-Once Public Functions (POPFs)

For our proof, we need to: [MRR20]

1. Hide the receiver's choice bit.
2. Hide the non-chosen messages from the receiver.
3. Extract the adversary's choice bit.
4. Have a backdoor so we can program on BOTH choice bits.

Programmable-Once Public Functions (POPFs)

For simulatability, we need to: [MRR20]

1. Hide the receiver's choice bit.
2. Hide the non-chosen messages from the receiver.
3. Extract the adversary's choice bit.
4. Have a backdoor so we can program on BOTH choice bits.
\Downarrow
5. Eval(Program $(c, \$))$ looks like a uniform function.

Programmable-Once Public Functions (POPFs)

1. Hide the receiver's choice bit.
2. Hide the non-chosen messages from the receiver.
3. Extract the adversary's choice bit.
4. Have a backdoor so we can program on BOTH choice bits.

$$
\Downarrow
$$

1. Eval(Program $(c, \$), \cdot)$ looks like a uniform function.
2. Given $\varphi \leftarrow \operatorname{Program}(c, \star)$, Eval $(\varphi, 1-c)$ is uniform after passing through a weak random function.

Programmable-Once Public Functions (POPFs)

For simulatability, we need to: [MRR20]

2. Hide the non-chosen messages from the receiver.
3. Extract the adversary's choice bit.
4. Have a backdoor so we can program on BOTH choice bits.
\Downarrow

1. Eval(Program $(c, \$))$ looks like a uniform function.
2. Given $\varphi \leftarrow \operatorname{Program}(c, \star)$, $\operatorname{Eval}(\varphi, 1-c)$ is uniform after passing through a weak random function.
3. We need the usual simulation properties e.g. from a random oracle or ideal cipher.

Programmable-Once Public Functions (POPFs)

Why do we call it a Programmable-Once Public Function?

1. A party can program the
2. Programmable-Once output of the function for exactly one input.

Programmable-Once Public Functions (POPFs)

Why do we call it a Programmable-Once Public Function?

1. A party can program the output of the function for exactly one input.
2. A party then sends a representation which can be evaluated by anyone as a function.

Key Agreement (KA) Restrictions

- Eval(Program $(c, \$), \cdot)$ looks like a uniform function.
\Downarrow
- Key agreement messages we wrap should be uniform so we can hide the choice bit.
- Even if subsequent messages are dependent on previous ones (certainly true for ECDHKA).

Feistel POPF

Constructing the POPF [MRR20]

- Familiar Feistel cipher.
- Known to realize an ideal cipher at 8 rounds (with loss).

Feistel POPF

Constructing the POPF [MRR20]

- The familiar Feistel cipher.
- Known to realize an ideal cipher at 8 rounds (with loss).
- Now in POPF form.
- Replacing the first XOR with a group operation.

Feistel POPF

Constructing the POPF [MRR20]

- The familiar Feistel cipher.
- Known to realize an ideal cipher at 8 rounds (with
 loss).
- Now in POPF form.
- Replacing the first XOR with a group operation.
- We showed that this construction can be optimized for the small domain situation by replacing H_{2} with an injection into a finite field.

Even-Mansour POPF

- The familiar Even-Mansour XOR cipher.
- Instantiated with a Ideal Permutation.

Even-Mansour POPF

- The familiar Even-Mansour XOR cipher.
- Instantiated with a Ideal Permutation.
- Now in POPF form.
- Dropping the first XOR.

Even-Mansour POPF

- The familiar Even-Mansour XOR cipher.
- Instantiated with a Ideal Permutation.
- Now in POPF form.
- Dropping the first XOR.
- We showed this construction was a POPF.

Masny-Rindal POPF

- Looks like a one round Feistel Cipher.

Masny-Rindal POPF

[MasnyRindal2019]

- Looks like a one round Feistel Cipher.
- Moving to 1-of-N OT extends differently than the Feistel construction.
- Doesn't efficiently extend to exponential N .

Masny-Rindal POPF

[MasnyRindal2019]

- Looks like a one round Feistel Cipher.
- Moving to 1 -of-N OT extends differently than the Feistel construction.
- Doesn't efficiently extend to exponential N .
- We showed that the

Masny-Rindal protocol was
a special case of the MRR20 protocol.

Naïve Batching

How would we naturally batch our running protocol?

$$
A_{1}:=\mathrm{KA} \cdot \mathrm{msg}_{1}\left(a_{1}\right)
$$

Sender $\underset{\varphi}{\stackrel{\varphi}{\longleftrightarrow}=\operatorname{IC} . \operatorname{Enc}\left(c_{1}, \mathrm{KA} \cdot \operatorname{msg}_{2}\left(b_{1}, A\right)\right)}$ Receiver

$$
A_{2}:=\mathrm{KA} \cdot \mathrm{msg}_{1}\left(a_{2}\right)
$$

Sender $\underset{\varphi:=\operatorname{IC} . \operatorname{Enc}\left(c_{2}, \mathrm{KA} \cdot \mathrm{msg}_{2}\left(b_{2}, A\right)\right)}{\leftrightarrows}$ Receiver

$$
A_{3}:=\mathrm{KA} \cdot \mathrm{msg}_{1}\left(a_{\kappa}\right)
$$

Sender $\overrightarrow{\varphi:=\operatorname{IC} \cdot \operatorname{Enc}\left(c_{\kappa}, \operatorname{KA} \cdot \operatorname{msg}_{2}\left(b_{\kappa}, A\right)\right)}$ Receiver

Naïve Batching

How would we naturally batch our running protocol?

$$
A_{1}:=\mathrm{KA} \cdot \mathrm{msg}_{1}\left(a_{1}\right)
$$

Sender $\underset{\underset{\varphi}{\varphi}:=\operatorname{IC} . \operatorname{Enc}\left(c_{1}, \mathrm{KA} \cdot \mathrm{msg}_{2}\left(b_{1}, A\right)\right)}{ }$ Receiver

$$
A_{2}:=K A \cdot \operatorname{msg}_{1}\left(a_{2}\right)
$$

Sender $\stackrel{\varphi:=\operatorname{IC} . \operatorname{Enc}\left(c_{2}, \mathrm{KA} \cdot \mathrm{msg}_{2}\left(b_{2}, A\right)\right)}{\leftrightarrows}$ Receiver

$$
A_{3}:=\mathrm{KA} \cdot \mathrm{msg}_{1}\left(a_{\kappa}\right)
$$

Sender $\overrightarrow{\varphi:=\operatorname{IC} \cdot \operatorname{Enc}\left(c_{\kappa}, \operatorname{KA} \cdot \operatorname{msg}_{2}\left(b_{\kappa}, A\right)\right)}$ Receiver

Naïve Batching

How would we naturally batch our running protocol?

$$
A:=K A \cdot \operatorname{msg}_{1}(a)
$$

Sender $\underset{\varphi:=\operatorname{IC} . \operatorname{Enc}\left(c_{1}, \mathrm{KA}^{2} \mathrm{msg}_{2}\left(b_{1}, A\right)\right)}{\stackrel{\varphi}{\varphi}}$ Receiver

The Problem with Naïve Batching

1. Sender gives $A:=K A \cdot \operatorname{msg}_{1}(a)$ to Receiver.

The Problem with Naïve Batching

1. Sender gives $A:=K A \cdot \operatorname{msg}_{1}(a)$ to Receiver.
2. Receiver generates $B_{1}:=I C . E n c\left(K A . \operatorname{msg}_{2}(b, A), 0\right)$, $B_{2}:=\operatorname{IC} \cdot \operatorname{Enc}\left(K A \cdot \operatorname{msg}_{2}(b, A), 1\right)$.

The Problem with Naïve Batching

1. Sender gives $A:=K A . \mathrm{msg}_{1}(a)$ to Receiver.
2. Receiver generates $B_{1}:=\mathrm{IC} . \operatorname{Enc}\left(\mathrm{KA} . \operatorname{msg}_{2}(b, A), 0\right)$, $B_{2}:=\operatorname{IC} \cdot \operatorname{Enc}\left(K A . \operatorname{msg}_{2}(b, A), 1\right)$.
3. Receiver gives $B_{1}, B_{1}, B_{1}, B_{1}, \ldots$ to Sender.

The Problem with Naïve Batching

1. Sender gives $A:=K A \cdot \operatorname{msg}_{1}(a)$ to Receiver.
2. Receiver generates $B_{1}:=\mathrm{IC} . \operatorname{Enc}\left(\mathrm{KA} . \mathrm{msg}_{2}(b, A), 0\right)$, $B_{2}:=\operatorname{IC} \cdot \operatorname{Enc}\left(K A . \operatorname{msg}_{2}(b, A), 1\right)$.
3. Receiver gives $B_{1}, B_{1}, B_{1}, B_{1}, \ldots$ to Sender.
4. Receiver causes all strings across the batch to be equal!

- Or could induce complex correlations.

The Problem with Naïve Batching

1. Sender gives $A:=K A \cdot \operatorname{msg}_{1}(a)$ to Receiver.
2. Receiver generates $B_{1}:=\mathrm{IC}$. Enc $\left(\mathrm{KA} . \mathrm{msg}_{2}(b, A), 0\right)$, $B_{2}:=\operatorname{IC} \cdot \operatorname{Enc}\left(K A . \operatorname{msg}_{2}(b, A), 1\right)$.
3. Receiver gives $B_{1}, B_{1}, B_{1}, B_{1}, \ldots$ to Sender.
4. Receiver causes all strings across the batch to be equal!

- Or could induce complex correlations.

Affects OT Extension protocols in a devastating way...

Naïve Batching in OT Extension

OOS OT Extension [OrrùOrsiniScholl17]

Naïve Batching in OT Extension

OOS OT Extension [OrrùOrsiniScholl17]

Naïve Batching in OT Extension

OOS OT Extension [OrrùOrsiniScholl17]

Naïve Batching in OT Extension

OOS OT Extension [OrrùOrsiniScholl17]

$$
K_{i, \star} \in\left\{0^{m}, 1^{m}\right\}
$$

$$
R_{j, \star}=C\left(c_{j}\right)
$$

$K \oplus R$ is sent to Alice

0	0	0	\cdots	0
1	1	1	\cdots	1
1	1	1	\cdots	1
		\vdots		
0	0	0	\cdots	0

$$
\begin{array}{|c|}
\hline C\left(c_{1}\right) \\
C\left(c_{2}\right) \\
C\left(c_{3}\right) \\
\vdots \\
C\left(c_{N}\right) \\
\hline
\end{array}
$$

Naïve Batching in OT Extension

OOS OT Extension [OrrùOrsiniScholl17]

If $C(0) \neq C(1)^{c}$, we can determine each c_{i}

$$
\begin{gathered}
C\left(c_{1}\right) \\
C\left(c_{2}\right)^{c} \\
C\left(c_{3}\right)^{c} \\
\vdots \\
C\left(c_{N}\right) \\
\hline
\end{gathered}
$$

- Can extract all the receiver's choice bits.
- Relies on the two codewords not being complements (KOS).
- Could there be more complex correlations?

Reusing the First Message in POPF-OT

- How do we solve this problem?
- Disallow for correlations by separating each OT instance!

Reusing the First Message in POPF-OT

- How do we solve this problem?
- Disallow for correlations by separating each OT instance!
- Implement domain separation at the Key Agreement level with Tagged KA.

$$
{\text { KA. } \operatorname{key}_{\{1,2\}}(\cdot, \cdot) \quad \text { KA. }^{\prime} \operatorname{key}_{\{1,2\}}(\cdot, \cdot, \tau)}
$$

Argument of Security

1. $a, b \leftarrow \$$
2. $A:=\mathrm{KA} \cdot \mathrm{msg}_{1}(a), B:=$ $\mathrm{KA} \cdot \mathrm{msg}_{2}(b, A)$
3. $K:=\mathrm{KA}^{2} \cdot \mathrm{key}_{1}(a, B, \tau)=$ KA. $\operatorname{key}_{2}(b, A, \tau)$

Argument of Security

$$
\begin{array}{ll}
\text { 1. } a, b \leftarrow \$ & \text { 1. } a, b \leftarrow \$ \\
\text { 2. } A:=\mathrm{KA} \cdot \mathrm{msg}_{1}(a), & \text { 2. } A:=a \cdot g, B:=b \cdot G \\
B:=\mathrm{KA} \cdot \mathrm{msg}_{2}(b, A) & \text { 3. } K:=H(a \cdot B, \tau)=H(b \cdot A, \tau) \\
\text { 3. } K:=\mathrm{KA}^{2} \cdot \operatorname{key}_{1}(a, B, \tau) & \\
B=\mathrm{KA} \cdot \operatorname{keg}_{2}(b, A, \tau) &
\end{array}
$$

Argument of Security

1. $a, b \leftarrow \$$
2. $A:=\mathrm{KA} \cdot \mathrm{msg}_{1}(a), B:=$ $\mathrm{KA} \cdot \mathrm{msg}_{2}(b, A)$
3. $K:=\mathrm{KA}^{2} \mathrm{key}_{1}(a, B, \tau)=$ KA. $\mathrm{key}_{2}(b, A, \tau)$

- Let τ be the OT index in a batch.
- The simulator can program each output separately to maintain separation.

KA In POPF-OT

- Now that we know how to batch properly, how can we further optimize the process?

KA \ln POPF-OT

- Now that we know how to batch properly, how can we further optimize the process?
- MRR20 required a KA with uniform messages for both parties in a PAKE.
- This was unsatisfied by stock Elliptic Curve Diffie-Hellman KA.

KA In POPF-OT

- Now that we know how to batch properly, how can we further optimize the process?
- MRR20 required POPF-compatible key agreements for both parties in a PAKE.
- This was unsatisfied by stock Elliptic Curve Diffie-Hellman KA.
- Ideal Cipher Compatible - Uniform Bitstrings - Elligator.
- Random Oracle Compatible - Hash to Curve.

KA In POPF-OT

- Now that we know how to batch properly, how can we further optimize the process?
- MRR20 required POPF-compatible key agreements for both parties in a PAKE.
- This was unsatisfied by stock Elliptic Curve Diffie-Hellman KA.
- Ideal Cipher Compatible - Uniform Bitstrings - Elligator.
- Random Oracle Compatible - Hash to Curve.
- OT requires the property for the receiver only. The sender's message is outside a POPF.

KA In POPF-OT

- Now that we know how to batch properly, how can we further optimize the process?
- MRR20 required POPF-compatible key agreements for both parties in a PAKE.
- This was unsatisfied by stock Elliptic Curve Diffie-Hellman KA.
- Ideal Cipher Compatible - Uniform Bitstrings - Elligator.
- Random Oracle Compatible - Hash to Curve.
- OT requires the property for the receiver only. The sender's message is outside a POPF.
- Uniform Bitstrings for One Party - Möller's Trick [Möller04]

Möller's KA

[Möller04]

- Elliptic curve elements don't look like uniform bitstrings naturally.
- Even the X-coordinates don't all lie on the curve.

Möller's KA

[Möller04]

- Elliptic curve elements don't look like uniform bitstrings naturally.
- Even the X-coordinates don't all lie on the curve.
- But where do all the other X-coordinates lie?

Möller's KA

[Möller04]

- Elliptic curve elements don't look like uniform bitstrings naturally.
- Even the X-coordinates don't all lie on the curve.
- But where do all the other X-coordinates lie?
- All the other X-coordinates lie on the curve's twist!
- If both curves are secure and about the same size, we can use uniform messages!

Möller's KA

[Möller04]

1. Alice sends KA messages for both curves.

Möller's KA

[Möller04]

Alice		Bob
$A_{0} \in C_{0}$		$\beta \leftarrow\{0,1\}$
$A_{1} \in C_{1}$	A_{0}, A_{1}	$B \in C_{\beta}$

1. Alice sends KA messages for both curves - This cost is amortized over each KA in a batch.
2. Bob samples a bit and sends a KA message for one of the two curves.

Möller's KA

[Möller04]

Möller's KA

[Möller04]

1. Alice sends KA messages for both curves - This cost is amortized over each KA in a

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
A_{0} \in C_{0} & \\
A_{1} \in C_{1} & A_{0}, A_{1} \\
\xrightarrow{\longleftrightarrow} B \in\{0,1\} \\
H\left(a_{\beta} \cdot B, \tau\right) & B
\end{array}
$$ batch.

3. Alice/Bob then compute the corresponding shared key.
4. B is now uniformly distributed in \mathbb{F}_{n}

Performance Evaluation

Batch of 128 OTs

Protocol	Sender (ms)	Receiver (ms)
0.1 ms latency, 10000Mbps bandwidth cap (LAN)		
Simplest OT (Sender-reuse)	35	17
Naor-Pinkas OT (Sender-reuse)	43	34
Endemic OT (No reuse)	79	42
Endemic OT (Sender-reuse)	62	37
Ours (Feistel POPF)	82	40
Ours (Feistel POPF - Möller)	49	26
Ours (MR POPF - Möller)	48	27
Ours (EKE POPF - Möller)	50	25

Performance Evaluation

Batch of 128 OTs

Protocol	Sender (ms)	Receiver (ms)
30ms latency, 100Mbps bandwidth cap (WAN)		
Simplest OT (Sender-reuse)	105	111
Naor-Pinkas OT (Sender-reuse)	101	107
Endemic OT (No reuse)	161	53
Endemic OT (Sender-reuse)	137	53
Ours (Feistel POPF)	155	47
Ours (Feistel POPF - Möller)	128	44
Ours (MR POPF - Möller)	128	44
Ours (EKE POPF - Möller)	128	44

Performance Evaluation

- 18% WAN / 11% LAN performance increase in batching reusing the sender's $K A$ message.

Performance Evaluation

- 18% WAN / 11% LAN performance increase in batching reusing the sender's KA message.
- 126 fewer exponentiations and group elements sent from the sender.
- All receiver exponentiations use the same base.

Performance Evaluation

- 18% WAN / 11% LAN performance increase in batching reusing the sender's KA message.
- 126 fewer exponentiations and group elements sent from the sender.
- All receiver exponentiations use the same base.
- 31\% WAN / 12\% LAN performance increase in batching moving to Möller KA.

Performance Evaluation

- 18% WAN / 11% LAN performance increase in batching reusing the sender's KA message.
- 126 fewer exponentiations and group elements sent from the sender.
- All receiver exponentiations use the same base.
- 31% WAN / 12% LAN performance increase in batching moving to Möller KA.
- No expensive mapping operations.
- Multiplication can be accomplished with Montgomery Ladders.

Open Problems

- Do any similar problems arise in other OT extensions?
- Are there any post-quantum KAs that meet our properties?
- What else can POPFs be used in?

