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OT Batching and Extension

Where is OT used?
1. Garbled Circuits [GoldreichMicaliWigderson87]
2. Private Set Intersection e.g. [PinkasSchneiderZohner14]

Can require millions of OTs; necessarily requiring expensive
assymetric operations!



Notation

Key Agreement (KA)
notation:

> A:= KA.msg;(a)
> B := KA.msg,(A, b)
> KA'keYI({a7 b}a {A7 B})

Elliptic Curve Diffie-Hellman KA:

» Ai=a-g
> B:=b-g
> a-B,b-A



OT Batching and Extension

OT Extension [Beaver96|

. OTs(__ Expensive Operations

» Transform a small number
Extension of base OTs into a large
number of realized OTs.

l <-- Cheap Operations
poly(x) OTs



OT Batching and Extension

OT Extension [Beaver96]

. OTs(__ Expensive Operations
J » Transform a small number
of base OTs into a large
number of realized OTs.
Extension » Optimize the base OTs.

» We can send all of them
in a batch — This is the
batch setting.

J <-- Cheap Operations
poly(x) OTs



OT Batching and Extension

OT Extension [Beaver96]

<-- Expensive
k OTs P » Transform a small number

of base OTs into a large
J number of realized OTs.
» Optimize the base OTs.

» We can send all of them

Extension in a batch — This is the
batch setting.

» The natural way to optimize

<-- Cheap batching lacked a principled

poly(x) OTs treatment.



Results

» Provide a treatment of optimizing OTs in the batch setting.

» Expand the known OT constructions from
[McQuoidRosulekRoy20].

» Optimize the resulting OT construction to the batch setting.



Roadmap

MRR20 Recap

1. The [MRR20] OT protocol

2. Programmable-Once Public Functions

The Problem with Batching

1. What's the issue?
2. What's the fix?
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As motivation [MRR20]:
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A Simple OT Protocol

What's going on?
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A Simple OT Protocol

What's going on?

a+$ b<—$,C€{O,1}
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Sender Receiver

» The Sender sends a KA message.
» The Receiver sends back a wrapped KA message dependent
on their choice bit.



A Simple OT Protocol

[MRR20]
a<—$ b<—$,C€{O,1}
P& S,
- )
o A=a- o
e & o
Sender Receiver
Output
Output
a- Eval(y,0) -
5 Eval(ip. 1) b-A=a-Eval(y,c)

Do we need the strong properties of an Ideal Cipher? Can we use
something weaker?



A Simple OT Protocol

Our Ideal Cipher What Weak Cipher?
» ¢ :=IC.Enc(c,b-g) >
» Output: a- IC.Dec(c,p) >
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A Simple Endemic OT Protocol

Our Ideal Cipher What Weak Cipher?
» ¢ :=IC.Enc(c,b-g) » = Program(c,b- g)
» OQutput: aIC.Dec(c, ) » OQutput: a- Eval(p,1)



Programmable-Once Public Functions (POPFs)
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For our proof, we need to: [MRR20]

1. Hide the receiver’s choice bit.

2. Hide the non-chosen messages from the receiver.
3. Extract the adversary's choice bit.
4

. Have a backdoor so we can program on BOTH choice bits.
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2. Hide the non-chosen messages from the receiver.
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1. Eval(Program(c,$)) looks like a uniform function.



Programmable-Once Public Functions (POPFs)

For simulatability, we need to: [MRR20] ;. g5
1.

Sender A=a-G

Qutput
a-Eval(p,0),__¥ = Program(c, b - A)

Hide the receiver's choice bit.

2. Hide the non-chosen messages from the receiver.
3.
4. Have a backdoor so we can program on BOTH choice bits.

Extract the adversary's choice bit.

4

1. Eval(Program(c,$),-) looks like a uniform function.

Given ¢ < Program(c, ), Eval(p,1 — ¢) is uniform after
passing through a weak random function.
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Programmable-Once Public Functions (POPFs)

Sender A=a-G

For simulatability, we need to: [MRR20] Output

1.

a-Eval(p,0),__¥ = Program(c, b - A)

Hide the receiver’s choice bit. a-Eval(y,1)

2. Hide the non-chosen messages from the receiver.
3.
4

. Have a backdoor so we can program on BOTH choice bits.

Extract the adversary's choice bit.

4

1. Eval(Program(c,$)) looks like a uniform function.

Given ¢ <— Program(c, ), Eval(yp,1 — c) is uniform after
passing through a weak random function.

We need the usual simulation properties e.g. from a random
oracle or ideal cipher.

Receiver

Qutput
b-A
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Programmable-Once Public Functions (POPFs)

Why do we call it a Programmable-Once Public Function?

1. A party can program the
output of the function for

exactly one input.
1. Programmable-Once y HPH

2. Public Function 2. A party then sends 3

representation which can be
evaluated by anyone as a
function.



Key Agreement (KA) Restrictions

» Eval(Program(c,$),-) looks like a uniform function.

4

» Key agreement messages we wrap should be uniform so we
can hide the choice bit.

» Even if subsequent messages are dependent on previous ones
(certainly true for ECDHKA).



Feistel POPF

Constructing the POPF
[MRR20]
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Feistel POPF

Constructing the POPF
[MRR20]

KA.msg(A) c

&~

The familiar Feistel cipher.

Known to realize an ideal
cipher at 8 rounds (with
loss).
Now in POPF form.

» Replacing the first XOR

with a group operation.

We showed that this
construction can be
optimized for the small
domain situation by
replacing Hy with an
injection into a finite field.



Even—Mansour POPF
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XOR cipher.

» Instantiated with a Ideal
Permutation.
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Even—Mansour POPF
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The familiar Even-Mansour
XOR cipher.
Instantiated with a ldeal
Permutation.
Now in POPF form.

» Dropping the first XOR.

We showed this construction
was a POPF.
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» Moving to 1-of-N OT
extends differently than
the Feistel construction.

» Doesn't efficiently extend to
exponential N.




Masny-Rindal POPF

[MasnyRindal2019]

» Looks like a one round
Feistel Cipher.

» Moving to 1-of-N OT
extends differently than
the Feistel construction.

» Doesn't efficiently extend to
exponential N.
» We showed that the
P Sc S1—c Masny-Rindal protocol was
a special case of the MRR20
protocol.




Naive Batching

How would we naturally batch our running protocol?
A1 := KA.msg;(a1)

Sender ¢ := IC.Enc(ci, KA.msg,(b1,A)) Receiver

Az := KA.msg;(az)
Sender ¢ = IC.Enc(cy, KA.msg,(b2, A)) Receiver

Az := KA.msg;(a,)
Sender ¢ := IC.Enc(cx, KA.msgy(bs, A)) Receiver
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Naive Batching

How would we naturally batch our running protocol?
A = KA.msg;(a)

Sender ¢ := IC.Enc(cy, KA.msg,(b1, A

( ( )) Receiver
¢ 1= IC.Enc(c, KA.msg,(bo, A)

( (b3, A)

( (

@ = IC.Enc(c3, KA.msg, (b3, A
¢ := IC.Enc(cy, KA.msgy(by, A)

)
)
)
)
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The Problem with Naive Batching

1. Sender gives A := KA.msg;(a) to Receiver.

2. Receiver generates B; := IC.Enc(KA.msg,(b, A),0),
B, := IC.Enc(KA.msg,(b, A),1).
3. Receiver gives By, By, By, B1, ... to Sender.
4. Receiver causes all strings across the batch to be equal!
» Or could induce complex correlations.

Affects OT Extension protocols in a devastating way. ..



Naive Batching in OT Extension

OO0S OT Extension [OrruOrsiniScholl17]
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Naive Batching in OT Extension

0OO0S OT Extension [OrruOrsiniScholl17]
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Naive Batching in OT Extension

0OO0S OT Extension [OrruOrsiniScholl17]

Alices—— OT

mio
ma 1
mi.o
mi1
mi o
mi1

mi o
mi

BOR*’,' = PRG(m,',o) (&) PRG(m,-,l)




Naive Batching in OT Extension

0OO0S OT Extension [OrruOrsiniScholl17]

Ki € {0m 1™} Ri.. = C(cg) Ko RAiI§ sent to
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Naive Batching in OT Extension

OOS OT Extension [OrruOrsiniScholl17]

If C(0) # C(1)¢, we can

) » Can extract all the receiver’s
determine each ¢;

choice bits.
C(a) » Relies on the two codewords
C(e)° not being complements
C(e3)¢ (KOS).

» Could there be more
C(en) complex correlations?




Reusing the First Message in POPF-OT

» How do we solve this problem?
» Disallow for correlations by separating each OT instance!



Reusing the First Message in POPF-OT

» How do we solve this problem?
» Disallow for correlations by separating each OT instance!

» Implement domain separation at the Key Agreement level
with Tagged KA.



Argument of Security

1. a,b+$
2. A:=KA.msg;(a),B := 1. a,b+$
KA.msg,(b, A) 2. Ai=a-gB:=b-G
3. K:=KAkey;(a,B,7) = 3. K:=H(a-B,7) = H(b-A,7)

KA .key,(b, A, T)
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» Let 7 be the OT index in a batch.



Argument of Security

1. a,b+$
2. A:=KA.msg;(a),B := 1. a,b+$
KA.msg,(b, A) 2. Ai=a-gB:=b-G
3. K:=KAkeyy(a,B,7) = 3. K:=H(a-B,7) = H(b-A,7)

KA.key, (b, A, T)
» Let 7 be the OT index in a batch.

» The simulator can program each output separately to
maintain separation.
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KA In POPF-OT

» Now that we know how to batch properly, how can we further
optimize the process?

» MRR20 required POPF-compatible key agreements for both
parties in a PAKE.

» This was unsatisfied by stock Elliptic Curve Diffie-Hellman
KA.
» Ideal Cipher Compatible — Uniform Bitstrings — Elligator.
» Random Oracle Compatible — Hash to Curve.
» OT requires the property for the receiver only. The sender’s
message is outside a POPF.
» Uniform Bitstrings for One Party — Maller’s Trick [M&ller04]
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naturally.

» Even the X-coordinates don’t all lie on the curve.
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Moller's KA

[Méller04]
» Elliptic curve elements don't look like uniform bitstrings
naturally.
» Even the X-coordinates don’t all lie on the curve.
» But where do all the other X-coordinates lie?
» All the other X-coordinates lie on the curve's twist!

» If both curves are secure and about the same size, we can use
uniform messages!



Moller's KA

[M&ller04]

Alice
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Bob

1. Alice sends KA messages for
both curves.
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Moller's KA

[M&ller04]
1. Alice sends KA messages for
both curves — This cost is
Alice Bob amortized over each KA in a
A € G B+« {0,1}  batch.

A e G Ao, Ay B € Cs 2. Bob samples a bit and sends
: a KA message for one of the

two curves.

B
H(as - B,T) H(bs - A7) 3 Alice/Bob then compute the
corresponding shared key.




Moller's KA

[Moller04]
1
Alice Bob
Ag e G B%{O,l} 2.
AL e 4 Ao,A1 B e CS
B 3.
H(a‘; B, T H(bAgT)

. Alice sends KA messages for

both curves — This cost is
amortized over each KA in a
batch.

Bob samples a bit and sends
a KA message for one of the
two curves.

Alice/Bob then compute the
corresponding shared key.

B is now uniformly
distributed in F,



Performance Evaluation

Batch of 128 OTs

Protocol Sender (ms) Receiver (ms)

0.1ms latency, 10000Mbps bandwidth cap (LAN)

Simplest OT (Sender-reuse) 35 17
Naor-Pinkas OT (Sender-reuse) 43 34
Endemic OT (No reuse) 79 42
Endemic OT (Sender-reuse) 62 37
Ours (Feistel POPF) 82 40
Ours (Feistel POPF — Moller) 49 26
Ours (MR POPF — Modller) 48 27
Ours (EKE POPF — Modller) 50 25




Performance Evaluation

Batch of 128 OTs

Protocol Sender (ms) Receiver (ms)

30ms latency, 100Mbps bandwidth cap (WAN)

Simplest OT (Sender-reuse) 105 111
Naor-Pinkas OT (Sender-reuse) 101 107
Endemic OT (No reuse) 161 53
Endemic OT (Sender-reuse) 137 53
Ours (Feistel POPF) 155 47
Ours (Feistel POPF — Moller) 128 44
Ours (MR POPF — Modller) 128 44
Ours (EKE POPF — Modller) 128 44
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Performance Evaluation

» 18% WAN / 11% LAN performance increase in batching
reusing the sender's KA message.
P 126 fewer exponentiations and group elements sent from the
sender.
P All receiver exponentiations use the same base.
» 31% WAN / 12% LAN performance increase in batching
moving to Moller KA.
» No expensive mapping operations.
» Multiplication can be accomplished with Montgomery Ladders.



Open Problems

» Do any similar problems arise in other OT extensions?
» Are there any post-quantum KAs that meet our properties?
» What else can POPFs be used in?
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