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OT Batching and Extension

Where is OT used?

1. Garbled Circuits [GoldreichMicaliWigderson87]

2. Private Set Intersection e.g. [PinkasSchneiderZohner14]

Can require millions of OTs; necessarily requiring expensive
assymetric operations!



Notation

Key Agreement (KA)
notation:

I A := KA.msg1(a)

I B := KA.msg2(A, b)

I KA.keyi ({a, b}, {A,B})

Elliptic Curve Diffie-Hellman KA:

I A := a · g
I B := b · g
I a · B, b · A
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OT Batching and Extension

OT Extension [Beaver96]

Extension

κ OTs
Expensive

poly(κ) OTs

Cheap

I Transform a small number
of base OTs into a large
number of realized OTs.

I Optimize the base OTs.
I We can send all of them

in a batch — This is the
batch setting.

I The natural way to optimize
batching lacked a principled
treatment.



Results

I Provide a treatment of optimizing OTs in the batch setting.

I Expand the known OT constructions from
[McQuoidRosulekRoy20].

I Optimize the resulting OT construction to the batch setting.



Roadmap

MRR20 Recap

1. The [MRR20] OT protocol

2. Programmable-Once Public Functions

The Problem with Batching

1. What’s the issue?

2. What’s the fix?
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A Simple OT Protocol

As motivation [MRR20]:

a← $

Sender

b ← $, c ∈ {0, 1}

Receiver

A := a · g

ϕ := IC.Enc(c , b · g)

Output
aIC.Dec(0, ϕ)
aIC.Dec(1, ϕ)

Output
b · A = a · IC.Dec(c , ϕ)
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A Simple OT Protocol

What’s going on?

a← $

Sender

b ← $, c ∈ {0, 1}

Receiver

A := a · g

ϕ := IC.Enc(c , b · g)

I The Sender sends a KA message.

I The Receiver sends back a wrapped KA message dependent
on their choice bit.



A Simple OT Protocol

[MRR20]

a← $

Sender

b ← $, c ∈ {0, 1}

Receiver

A := a · g

ϕ := Program(c , b · g)

Output
a · Eval(ϕ, 0)
a · Eval(ϕ, 1)

Output
b · A = a · Eval(ϕ, c)

Do we need the strong properties of an Ideal Cipher? Can we use
something weaker?



A Simple OT Protocol

Our Ideal Cipher

I ϕ := IC.Enc(c , b · g)

I Output: a · IC.Dec(c , ϕ)

What Weak Cipher?

I

I



A Simple Endemic OT Protocol

Our Ideal Cipher
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I Output: aIC.Dec(c , ϕ)

What Weak Cipher?

I ϕ := Program(c , b · g)

I



A Simple Endemic OT Protocol

Our Ideal Cipher

I ϕ := IC.Enc(c , b · g)

I Output: aIC.Dec(c , ϕ)

What Weak Cipher?

I ϕ := Program(c , b · g)

I Output: a · Eval(ϕ, 1)
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3. Extract the adversary’s choice bit.

4. Have a backdoor so we can program on BOTH choice bits.



Programmable-Once Public Functions (POPFs)

For simulatability, we need to: [MRR20]

1. Hide the receiver’s choice bit.

2. Hide the non-chosen messages from the receiver.

3. Extract the adversary’s choice bit.

4. Have a backdoor so we can program on BOTH choice bits.

⇓

1. Eval(Program(c , $)) looks like a uniform function.



Programmable-Once Public Functions (POPFs)

For simulatability, we need to: [MRR20]

1. Hide the receiver’s choice bit.

2. Hide the non-chosen messages from the receiver.

3. Extract the adversary’s choice bit.

4. Have a backdoor so we can program on BOTH choice bits.

⇓

1. Eval(Program(c , $), ·) looks like a uniform function.

2. Given ϕ← Program(c , ?), Eval(ϕ, 1− c) is uniform after
passing through a weak random function.



Programmable-Once Public Functions (POPFs)

For simulatability, we need to: [MRR20]

1. Hide the receiver’s choice bit.

2. Hide the non-chosen messages from the receiver.

3. Extract the adversary’s choice bit.

4. Have a backdoor so we can program on BOTH choice bits.

⇓

1. Eval(Program(c , $)) looks like a uniform function.

2. Given ϕ← Program(c , ?), Eval(ϕ, 1− c) is uniform after
passing through a weak random function.

3. We need the usual simulation properties e.g. from a random
oracle or ideal cipher.
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1. A party can program the
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Programmable-Once Public Functions (POPFs)

Why do we call it a Programmable-Once Public Function?

1. Programmable-Once

2. Public Function

1. A party can program the
output of the function for
exactly one input.

2. A party then sends a
representation which can be
evaluated by anyone as a
function.



Key Agreement (KA) Restrictions

I Eval(Program(c , $), ·) looks like a uniform function.
⇓

I Key agreement messages we wrap should be uniform so we
can hide the choice bit.
I Even if subsequent messages are dependent on previous ones

(certainly true for ECDHKA).
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cipher at 8 rounds (with
loss).
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Feistel POPF

Constructing the POPF
[MRR20]

H1

KA.msg(A)

·

c $

H2⊕

c

s Tϕ :

I The familiar Feistel cipher.

I Known to realize an ideal
cipher at 8 rounds (with
loss).

I Now in POPF form.
I Replacing the first XOR

with a group operation.

I We showed that this
construction can be
optimized for the small
domain situation by
replacing H2 with an
injection into a finite field.
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Even–Mansour POPF

KA.msg(A)

Π

⊕

ϕ

c

I The familiar Even-Mansour
XOR cipher.

I Instantiated with a Ideal
Permutation.

I Now in POPF form.
I Dropping the first XOR.

I We showed this construction
was a POPF.



Masny-Rindal POPF

Hc

KA.msg(A)

· ?−1

$

sc s1−cϕ :

I Looks like a one round
Feistel Cipher.
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Masny-Rindal POPF

[MasnyRindal2019]

Hc

KA.msg(A)

· ?−1

$

sc s1−cϕ :

I Looks like a one round
Feistel Cipher.
I Moving to 1-of-N OT

extends differently than
the Feistel construction.

I Doesn’t efficiently extend to
exponential N.

I We showed that the
Masny-Rindal protocol was
a special case of the MRR20
protocol.
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Näıve Batching

How would we naturally batch our running protocol?

Sender Receiver

A := KA.msg1(a)

ϕ := IC.Enc(c1,KA.msg2(b1,A))

ϕ := IC.Enc(c2,KA.msg2(b2,A))

ϕ := IC.Enc(c3,KA.msg2(b3,A))

ϕ := IC.Enc(cκ,KA.msg2(bκ,A))
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The Problem with Näıve Batching

1. Sender gives A := KA.msg1(a) to Receiver.

2. Receiver generates B1 := IC.Enc(KA.msg2(b,A), 0),
B2 := IC.Enc(KA.msg2(b,A), 1).

3. Receiver gives B1,B1,B1,B1, . . . to Sender.

4. Receiver causes all strings across the batch to be equal!
I Or could induce complex correlations.

Affects OT Extension protocols in a devastating way. . .
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OOS OT Extension [OrrùOrsiniScholl17]
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Näıve Batching in OT Extension

OOS OT Extension [OrrùOrsiniScholl17]

Alice BobOT
m1,0

m1,1

OT
m1,0

m1,1

OT
m1,0

m1,1

...

OT
m1,0

m1,1

K?,i = PRG(mi ,0)⊕ PRG(mi ,1)

k1,1 k1,2 k1,3 k1,m
k2,1 k2,2 k2,3 k2,m
k3,1 k3,2 k3,3 · · · k3,m

...
...

...
...

kN,1 kN,2 kN,3 kN,m



Näıve Batching in OT Extension

OOS OT Extension [OrrùOrsiniScholl17]

Ki ,? ∈ {0m, 1m}

0 0 0 · · · 0
1 1 1 · · · 1
1 1 1 · · · 1

...
0 0 0 · · · 0

Rj ,? = C (cj)

C (c1)
C (c2)
C (c3)

...
C (cN)

K ⊕ R is sent to
Alice

C (c1)
C (c2)c

C (c3)c

...
C (cN)



Näıve Batching in OT Extension

OOS OT Extension [OrrùOrsiniScholl17]

If C (0) 6= C (1)c , we can
determine each ci

C (c1)
C (c2)c

C (c3)c

...
C (cN)

I Can extract all the receiver’s
choice bits.

I Relies on the two codewords
not being complements
(KOS).

I Could there be more
complex correlations?
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Reusing the First Message in POPF-OT

I How do we solve this problem?
I Disallow for correlations by separating each OT instance!

I Implement domain separation at the Key Agreement level
with Tagged KA.

KA.key{1,2}(·, ·) KA.key{1,2}(·, ·, τ)
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2. A := KA.msg1(a),B :=
KA.msg2(b,A)

3. K := KA.key1(a,B, τ) =
KA.key2(b,A, τ)

1. a, b ← $

2. A := a · g ,B := b · G
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Argument of Security

1. a, b ← $

2. A := KA.msg1(a),
B := KA.msg2(b,A)

3. K := KA.key1(a,B, τ)
B = KA.key2(b,A, τ)

1. a, b ← $

2. A := a · g ,B := b · G
3. K := H(a·B, τ) = H(b·A, τ)

I Let τ be the OT index in a batch.



Argument of Security

1. a, b ← $

2. A := KA.msg1(a),B :=
KA.msg2(b,A)

3. K := KA.key1(a,B, τ) =
KA.key2(b,A, τ)

1. a, b ← $

2. A := a · g ,B := b · G
3. K := H(a·B, τ) = H(b·A, τ)

I Let τ be the OT index in a batch.

I The simulator can program each output separately to
maintain separation.
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KA In POPF-OT

I Now that we know how to batch properly, how can we further
optimize the process?

I MRR20 required POPF-compatible key agreements for both
parties in a PAKE.

I This was unsatisfied by stock Elliptic Curve Diffie-Hellman
KA.
I Ideal Cipher Compatible — Uniform Bitstrings — Elligator.
I Random Oracle Compatible — Hash to Curve.

I OT requires the property for the receiver only. The sender’s
message is outside a POPF.
I Uniform Bitstrings for One Party — Möller’s Trick [Möller04]
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Möller’s KA

[Möller04]

I Elliptic curve elements don’t look like uniform bitstrings
naturally.
I Even the X -coordinates don’t all lie on the curve.
I But where do all the other X -coordinates lie?

I All the other X -coordinates lie on the curve’s twist!

I If both curves are secure and about the same size, we can use
uniform messages!
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A1 ∈ C1 A0,A1

1. Alice sends KA messages for
both curves.
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[Möller04]
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A0 ∈ C0

A1 ∈ C1

β ← {0, 1}
B ∈ CβA0,A1

BH(aβ · B, τ) H(bβ · A, τ)
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both curves — This cost is
amortized over each KA in a
batch.

2. Bob samples a bit and sends
a KA message for one of the
two curves.

3. Alice/Bob then compute the
corresponding shared key.



Möller’s KA

[Möller04]

Alice Bob
A0 ∈ C0

A1 ∈ C1

β ← {0, 1}
B ∈ CβA0,A1

BH(aβ · B, τ) H(b · Aβ, τ)

1. Alice sends KA messages for
both curves — This cost is
amortized over each KA in a
batch.

2. Bob samples a bit and sends
a KA message for one of the
two curves.

3. Alice/Bob then compute the
corresponding shared key.

4. B is now uniformly
distributed in Fn



Performance Evaluation

Batch of 128 OTs

Protocol Sender (ms) Receiver (ms)

0.1ms latency, 10000Mbps bandwidth cap (LAN)

Simplest OT (Sender-reuse) 35 17
Naor-Pinkas OT (Sender-reuse) 43 34
Endemic OT (No reuse) 79 42
Endemic OT (Sender-reuse) 62 37
Ours (Feistel POPF) 82 40
Ours (Feistel POPF — Möller) 49 26
Ours (MR POPF — Möller) 48 27
Ours (EKE POPF — Möller) 50 25



Performance Evaluation

Batch of 128 OTs

Protocol Sender (ms) Receiver (ms)

30ms latency, 100Mbps bandwidth cap (WAN)

Simplest OT (Sender-reuse) 105 111
Naor-Pinkas OT (Sender-reuse) 101 107
Endemic OT (No reuse) 161 53
Endemic OT (Sender-reuse) 137 53
Ours (Feistel POPF) 155 47
Ours (Feistel POPF — Möller) 128 44
Ours (MR POPF — Möller) 128 44
Ours (EKE POPF — Möller) 128 44



Performance Evaluation

I 18% WAN / 11% LAN performance increase in batching
reusing the sender’s KA message.



Performance Evaluation

I 18% WAN / 11% LAN performance increase in batching
reusing the sender’s KA message.
I 126 fewer exponentiations and group elements sent from the

sender.
I All receiver exponentiations use the same base.



Performance Evaluation

I 18% WAN / 11% LAN performance increase in batching
reusing the sender’s KA message.
I 126 fewer exponentiations and group elements sent from the

sender.
I All receiver exponentiations use the same base.

I 31% WAN / 12% LAN performance increase in batching
moving to Möller KA.



Performance Evaluation

I 18% WAN / 11% LAN performance increase in batching
reusing the sender’s KA message.
I 126 fewer exponentiations and group elements sent from the

sender.
I All receiver exponentiations use the same base.

I 31% WAN / 12% LAN performance increase in batching
moving to Möller KA.
I No expensive mapping operations.
I Multiplication can be accomplished with Montgomery Ladders.



Open Problems

I Do any similar problems arise in other OT extensions?

I Are there any post-quantum KAs that meet our properties?

I What else can POPFs be used in?
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